In vivo liver tissue mechanical properties by Transient Elastography: comparison with Dynamic Mechanical Analysis.

نویسندگان

  • Simon Chatelin
  • Jennifer Oudry
  • Nicolas Périchon
  • Laurent Sandrin
  • Pierre Allemann
  • Luc Soler
  • Rémy Willinger
چکیده

Understanding the mechanical properties of human liver is one of the most critical aspects of its numerical modeling for medical applications or impact biomechanics. Generally, model constitutive laws come from in vitro data. However, the elastic properties of liver may change significantly after death and with time. Furthermore, in vitro liver elastic properties reported in the literature have often not been compared quantitatively with in vivo liver mechanical properties on the same organ. In this study, both steps are investigated on porcine liver. The elastic property of the porcine liver, given by the shear modulus G, was measured by both Transient Elastography (TE) and Dynamic Mechanical Analysis (DMA). Shear modulus measurements were realized on in vivo and in vitro liver to compare the TE and DMA methods and to study the influence of testing conditions on the liver viscoelastic properties. In vitro results show that elastic properties obtained by TE and DMA are in agreement. Liver tissue in the frequency range from 0.1 to 4 Hz can be modeled by a two-mode relaxation model. Furthermore, results show that the liver is homogeneous, isotropic and more elastic than viscous. Finally, it is shown in this study that viscoelastic properties obtained by TE and DMA change significantly with post mortem time and with the boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography.

The mechanical properties of liver can sensitively indicate the progression of hepatic fibrosis. Mechanical tissue characterization involves the analysis of the complex shear modulus measured either by oscillatory rheometry or by in vivo elastography. In this study, bovine liver specimens were investigated by oscillatory rheometry and multifrequency magnetic resonance elastography (MRE) in a co...

متن کامل

In vivo MR elastography of liver: Comparison to oscillatory rheometer studies of tissue specimen

Introduction: Magnetic Resonance Elastography (MRE) is capable to measure the mechanical properties of living tissue by externally introduced shear vibrations and phase contrast MRI [1]. In multifrequency MRE the complex shear modulus G*(ω) of biological tissue is measured at various mechanical vibration frequencies simultaneously. Viscoelastic tissue parameters can then be calculated by fittin...

متن کامل

In vivo time-harmonic multifrequency elastography of the human liver.

Elastography is capable of noninvasively detecting hepatic fibrosis by imposing mechanical stress and measuring the viscoelastic response in the liver. Magnetic resonance elastography (MRE) relies on time-harmonic vibrations, while most dynamic ultrasound elastography methods employ transient stimulation methods. This study attempts to benefit from the advantages of time-harmonic tissue stimula...

متن کامل

Determination of Residual Stress for Single and Double Autofrettage of Thick-walled FG Cylinders Subjected to Dynamic Loading

In the present article a numerical procedure is developed for dynamic analysis of single and double autofrettage of thick–walled FG cylinders under transient loading. The governing differential equations are discretized and presented in explicit Lagrangian formalism. The explicit transient solution of discrete equations are obtained on the meshed region and results for stress and strain distrib...

متن کامل

Investigation of Shape Functions Role on the Mesh-free Method Application in Soft Tissue Elastography

In current study, The Mesh-free method based on weak-form formulation coupled with the ultrasound imaging technique is developed. This problem consists in computing the deformation of an elastic non-homogenous phantom by numerical methods (both Mesh-free and Finite Element) and converge their results to the measured deformation by the ultrasound. The shape functions of Mesh-free are approximate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biorheology

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2011